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The work is concerned with the problem of the linear instability of symmetric short- 
crested water waves, the simplest three-dimensional wave pattern. Two complementary 
basic approaches were used. The first, previously developed by Ioualalen & Kharif 
(1993, 1994), is based on the application of the Galerkin method to the set of Euler 
equations linearized around essentially nonlinear basic states calculated using the 
Stokes-like series for the short-crested waves with great precision. An alternative 
analytical approach starts with the so-called Zakharov equation, i.e. an integro- 
differential equation for potential water waves derived by means of an asymptotic 
procedure in powers of wave steepness. Both approaches lead to the analysis of an 
eigenvalue problem of the type 

det IA -IS) = 0 

where A and B are infinite square matrices. The first approach should deal with 
matrices of quite general form although the problem is tractable numerically. The 
use of the proper canonical variables in our second approach turns the matrix B into 
the unit one, while the matrix A gets a very specific ‘nearly diagonal’ structure with 
some additional (Hamiltonian) properties of symmetry. This enables us to formulate 
simple necessary and sufficient a priori criteria of instability and to find instability 
characteristics analytically through an asymptotic procedure avoiding a number of 
additional assumptions that other authors were forced to accept. 

A comparison of the two approaches is carried out. Surprisingly, the analytical 
results were found to hold their validity for rather steep waves (up to steepness 
0.4) for a wide range of wave patterns. We have generalized the classical Phillips 
concept of weakly nonlinear wave instabilities by describing the interaction between 
the elementary classes of instabilities and have provided an understanding of when 
this interaction is essential. The mechanisms of the relatively high stability of short- 
crested waves are revealed and explained in terms of the interaction between different 
classes of instabilities. A helpful interpretation of the problem in terms of an infinite 
chain of interacting linear oscillators was developed. 
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1. Introduction 
The so-called short-crested wavesf are three-dimensional progressive water waves 

composed of two progressive waves differing in the direction of propagation only. In 
the small-amplitude limit they tend to the simple superposition of two oblique plane 
waves. Short-crested waves appear naturally due to plane wave reflection from a 
sea-wall. Sometimes one can observe wave patterns closely resembling short-crested 
waves in unbounded natural basins. The nonlinear dynamics of short-crested waves is 
of evident interest for interpretation of some sea surface patterns; it is also of prime 
importance in the context of wave impact on structures. 

Apart from the importance for the applications there is another and perhaps deeper 
motivation to study their properties: they are the simplest representatives of a wide 
completely uninvestigated class of three-dimensional waves. We believe that the study 
of short-crested waves, being of interest in itself, is the necessary first step for the 
understanding of more widespread and more complicated three-dimensional patterns. 

A particular aspect we are interested in is the stability of these waves. The first 
studies of this problem were made by Roskes (1976) and by Mollo-Christensen (1981). 
These works were confined to the study of the one-dimensional (longitudinal) subhar- 
monic instabilities only and were based on the analysis of two coupled Schroedinger 
equations (see e.g. Roskes 1976) or just on the formal application of the Lighthill 
criterion to the Chappelear (1961) Stokes-like expansion, truncated at the third order 
(Mollo-Christensen 1981). 

The recent studies by Ioualalen & Kharif (1993, 1994, hereafter referred to as 
IK93, IK94) used a much more elaborated technique. The basic steady waves were 
described with great precision : the Stokes-like series for the short-crested waves 
were obtained employing a symbolic manipulator technique (Ioualalen 1993) and 
effective numerical algorithm. Although there is no rigorous proof of existence of 
the solutions, there are rather convincing numerical arguments along with the purely 
numerical solutions and extensive analysis by Roberts 1983 that give us enough 
confidence in the basic states under consideration for a wide range of wave steepness. 

The stability study of essentially nonlinear waves with respect to infinitesimal 
perturbations reduces to an eigenvalue problem of the type 

det JA - i B J  = 0 (1.1) 
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where A and B are infinite square matrices of a rather general form. The analysis 
was carried out via the Galerkin method for truncated matrices A and 6 in order 
to calculate eigenvalues 1 and to estimate the accuracy of these calculations. It was 
found that the strongest instabilities occur due to spatio-temporal resonance of the 
basic harmonics and two perturbation waves. In accordance with the concept of wave 
resonant interactions of Phillips (1960) (see also Zakharov 1968) the resonance zones 
were found to be close to the resonant curves prescribed by linear dispersion relations, 
while the instability rates were of order E", where E is a characteristic steepness of 
the basic waves and n is the number of interacting basic harmonics. The latter 
results give one an indication that perhaps instabilities of essentially nonlinear waves 
can nevertheless be effectively described within the framework of a weakly nonlinear 
theory. 

Quite recently stability investigations of weakly nonlinear water waves based on the 

t Following common practice we use this term throughout the paper for symmetric patterns 
only. The asymmetric patterns sometimes also called short-crested waves studied e.g. by Bryant 
(1985) lie beyond the scope of the present work. 
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Hamiltonian properties of water wave equations have got a new momentum through 
the work by Badulin & Shrira (1995, hereafter referred to as BS95), where a new 
approach has been developed. The essence of this approach can be summarized as 
follows. We start with the so-called Zakharov equation, i.e. an integro-differential 
equation for potential water waves derived by means of an asymptotic procedure in 
powers of E ;  the stability study as usual reduces to the analysis of an eigenvalue 
problem of the type (1.1) with an essential difference: the matrix 6 is now the 
unit one, while the matrix A has a very specific 'nearly diagonal' structure with 
some additional (Hamiltonian) properties of symmetry. This difference results in the 
following principal implications : 

some general properties of the problem of instability can be easily obtained in 
explicit form without any calculations ; 

instability characteristics can be found analytically. 
An approach similar in spirit was developed by Crawford et al. (1981), Stiassnie & 
Shemer (1984,1987) and Tomita (1987) for the stability of plane gravity waves and by 
Okamura (1984) for standing waves. However, the version of the Zakharov equation 
they based their studies on does not utilize all the symmetries of the original system, 
which leads to the hardly tractable eigenvalue problem. Some additional assumptions 
were made to treat the eigenvalue problem numerically. 

In the present work we apply the general approach of BS95 to analytical calculations 
of the instabilities of short-crested gravity waves and perform a detailed comparison 
with the numerical results by IK93, IK94. Combination of numerical and analytical 
approaches permits us to understand better physical mechanisms of water wave 
instabilities. The comparative advantages and disadvantages of the two approaches 
are discussed as well as ways of their possible synthesis. The specific questions we are 
aiming to clarify are the following: 

Do numerical calculations provide the full picture of the instability domain in 
the parameter space? We can check the validity of numerical calculations in the 
small-amplitude range where the asymptotic analytical formulae are sure to be valid. 

The asymptotic formulae often hold their validity well beyond the range of their 
formal applicability. Is it the case? We mentioned that there are some indications in 
the numerical computations by IK93, IK94. So, if yes, in what range and with what 
accuracy 'I 

What are the physical mechanisms of instabilities belonging to different classes 
and the physics of interaction between the classes? 

The paper is organized as follows. In Q 2 we start with the governing equations both 
in standard Eulerian form and in terms of the Hamiltonian formulation for surface 
waves proposed by Zakharov (1966, 1968). Steady solutions for short-crested gravity 
waves in primitive and canonical variables are presented and their comparison is 
carried out. In the original variables the steady solutions are given by the Stokes- 
like series, whose coefficients are calculated by means of a successive asymptotic 
procedure (Roberts 1983 ; IK93) with, in principle, arbitrary desired accuracy. Weakly 
nonlinear solutions of the reduced Hamiltonian equations (see e.g. Zakharov 1968; 
Krasitskii 1994) are Stokes-like series truncated at low number of items which are 
presented in terms of some canonical variables in extremely simple form as a sum of 
two &functions. Surprisingly good agreement between the two forms of solutions is 
found for the integral characteristics (e.g. wave energy, nonlinear frequency shift) in a 
wide range of waves parameters. Thus, the higher harmonics in the Stokes-like series 
at moderate wave steepness can affect significantly waves profiles but influence very 
slightly the integral characteristics of these waves. 
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In 8 3 the instability of the basic solutions of 9 2 is analysed. Within the framework 
of weakly nonlinear theory use of the properly chosen canonical variables results in 
an analytically tractable eigenvalue problem. The analysis of instability reduces to 
the question of the possibility and the type of coalescence of two or more partial 
frequencies of the perturbations, which is straightforwardly resolved for the generic 
situations. In its most general form this idea on the connection between an instability 
in the Hamiltonian system and coalescence of the roots of the eigenvalue equation 
goes back to work by Krein (1950) (for a review see e.g. Yakubovich & Starzhinskii 
1975). In the context of water wave dynamics it was used by MacKay & Saffman 
(1986) but has not been utilized to its full extent. We suggest a very simple and 
natural classification of the instabilities as a classification of different cases of this 
coalescence. 

A detailed comparison of the numerical and analytical results was carried out. We 
found good validity of analytical weakly nonlinear results for rather steep waves. 
The physical mechanisms of the relatively high stability of certain configurations 
of short-crested waves have been revealed. We suggest a qualitative explanation of 
this phenomenon in terms of interaction of the different classes of instabilities. The 
interaction of classes has already been considered by Zakharov & Rubenchik (1972) 
for a particular problem of instability of interacting high- and low-frequency waves. 

In the Discussion we consider some possible ways of extension of the results and 
methods of this paper to more complex cases, including three-dimensional waves 
of arbitrary structure. Some possible ways of synthesis of numerical and analytical 
methods are discussed as well. 

2. Statement of the problem 

2.1.1. Primitive equations 
We consider potential gravity waves on the free surface of an inviscid, incompress- 

ible fluid of infinite depth. The governing equations in the Cartesian frame {x, y, z} 
having the z = 0 plane on the undisturbed water surface and the z-axis oriented 
upward are standard: 

2.1. Governing equations 

where +(x, y, z, t )  is the velocity potential and z = ~ ( x ,  y, t )  is the equation of the free 
surface; the gravitational acceleration is taken to be unity. 

2.1.2. Hamiltonian formulation 
We shall deal with the Hamiltonian formulation of the equations of motion (2.1) 

in Fourier space proposed by Zakharov (1968). In terms of Fourier amplitudes the 
complex variables b(k)  are expressed by means of integral power series in Fourier 
amplitudes ~ ( k )  and ~ ( k ) ,  of the free surface elevation and the velocity potential at 
the free surface (see Appendix A). The basic equations (2.1) are presented in the form 

.db(k)  8% 
1- = - 

d t  db*(k)  
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where the Hamiltonian J? is expressed in terms of an integral power series in the 
complex amplitudes b(k) : 

n=4 

20 = w(k)b(k)b'(k)dk. 

(2 .3~)  

(2.3b) 

The first term in the expansion of the Hamiltonian in (2.3a,b), Ho, is quadratic ( o ( k )  
is the linear dispersion law) and gives the linear terms in the equations for b(k). The 
terms Xn are of power n in amplitudes b(k) and thus they are responsible for nonlinear 
effects. The systematic derivation of the equation (2.2) is given in Zakharov (1968) 
and Krasitskii (1990, 1994). We shall use the notation of Krasitskii (1990, 1994) 
except for the notation of the arguments. The full form of these arguments will be 
used. 

Confining ourselves to the first two terms in the series (2 .3~)  we arrive at the so- 
called four-wave reduced Zakharov's equation. Some key properties of this equation 
are important for our further consideration. 

(a) The Hamilton function takes the form 

2 = o(k)b(k)b'(k)dk .I 
$2 P'2'(k, kl, k2, k3)b'(k)b'(kl)b(k2)b(k3)s(k + kl - k2 - k3)dkdkldk2dk3, 'J 

that is, 2 is quartic in the amplitudes and the cubic term is absent in 
expansion. 

(b )  The Hamilton equation is cubic in the complex amplitudes b(k)  

(2 .4~)  
this truncated 

= w(k)b(k) 
. db(k)  
1- 

at (2.4b) 

All the formulae for the kernels P(2)(k,k1,k2,k3) and for b(k)  as a function of ~ ( k )  
and q(k)  which will be often used in further calculations are given in Appendix A. 

(c) Equation (2.4b) is the Hamiltonian that results in the following important 
symmetry properties of the kernels v(2)(k,kl,k2, k3) (see Krasitskii 1990, 1994): 

P(2)(k, kl ,  k2, k , )  = P(2)(k1, k,  k2, k3) = P(2)(k1, k,  k3, k2) = P(2)(k2, k3, k,  kl). (2.5) 

The form of the kernels we use is derived by Krasitskii (1990, 1994). The previous 
presentations of the kernels by other authors (see Zakharov 1968; Stiassnie & Shemer 
1984; Crawford et al. 1981) apart from having a number of misprints lacked these 
symmetry properties. 

( d )  There is a freedom in these kernels and canonical variables b(k)  allowing one to 
add an arbitrary function to the kernels obeying the symmetries (2.5) and vanishing 
at the resonant curves 

(2.6) 1 k + ki = k2 + k3, 
~ ( k )  + o(k1)  = 4 k 2 )  + ~ ( k 3 ) .  

It means that we can introduce a particular canonical transformation (see the formula 
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(A5)) to let some nonresonant kernels in formulae (2.4a), (2.4b) be plain zeros in 
order to simplify the form of the governing equations. This property is vital for 
getting exact solutions of the reduced equation (2.4b). 

2.2. Basic states for short-crested waves 
2.2.1. Stokes-like solutions in primitive variables 

Being interested in the steady solutions to the basic equations (2.1) describing 
short-crested waves, which in the linear limit is the superposition of two plane waves 
with the wavevectors K and ii ( 1  rc /=( ii I) and an angle (n - 2 0 )  between these 
wavevectors, we define a new coordinate frame as follows: 

x = x / K 1 sin o - sot, 

I Y =yIrcIcosO,  
z = z ,  

where QO is the wave frequency. The values 0 = 90" and 0 = 0" correspond to the 
Stokes progressive waves and standing waves, respectively. Both are two-dimensional 
limits of short-crested waves. Using the scaling invariance of deep-water waves we 
assume further that 1x1 = (El = 1. Thus, the solution corresponding to the short- 
crested waves is given by the expansion in the formally small-amplitude parameter E 

(Roberts 1983; IK93) 

N m,n=v \ 

p=l m,n=l 
N 

p=o 

Ymn = (m2 sin2 0 + n2 cos2 o) '/~. 
Symmetry and nonlinearity require the indices p ,  m, n to be of the same parity. Here E 

is a parameter of nonlinearity, assumed to be small; we shall call it wave amplitude or 
wave steepness. Separating equations (2.1) for each power of E we obtain an infinite 
set of algebraic equations for dp,,,, c ~ , ~ , ,  up which can be resolved successively. 

It is important to emphasize that the nonlinear solutions are determined by a 
number of coefficients cp,,,, dp,mn, wp which are functions of 0 only (we set the 
wavenumber to be unity) and do not depend on the parameter E, which is responsible 
for wave steepness. The method of calculation of c,,,,, dp,,,, wp proposed by 
Roberts 1983 gives an error o ( E " ~ )  ( N  is an order of the truncated series in powers 
of amplitudes (2.8)). In IK93 all these coefficients were calculated up to the order 
27 to obtain profiles of the short-crested waves, while a relatively small order of 
approximation in formulae (2.8) was often proved to be sufficient for the instability 
analysis. 

2.2.2. Steady solutions in canonical variables 
An alternative way to construct approximate solutions of (2.1) is to employ the 

asymptotic approach given by the Hamiltonian formulation of equations for surface 
gravity waves (Zakharov 1968). In our case the advantages of using this technique 
are especially palpable : 
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the solutions in the form of the sum of M 6-pulses in wavevector space 

M 

b(k)  = c bi(t)b(k - Ki) 

i=l 

are exact solutions of the reduced equation (2.4b) (see BS95). In particular, the solution 
of (2.4b) corresponding to non-steady weakly nonlinear short-crested waves can be 
presented in the form (2.9) as well. 

Let us seek steady solutions of (2.4b) in the form 

b(k)  = c0[6(k - K )  + 6(k -it)] exp(-iQOt), (2 .10~)  

(2.10b) 

I K I = l i z l .  (2.10c) 

520 = O ( K )  + V 2 ) ( K ,  K ,  K ,  K )  1 co l 2  +2P2)(IC, iz, K ,  it) 1 co 12, 

The solution (2.10) when inserted into the right-hand side of (2.4b) generates, generally 
speaking, higher harmonics. That is 

However, these harmonics are not resonant, i.e. they do not satisfy resonant conditions 
(2.6) and, thus, they can be excluded by a particular canonical transformation that 
makes the kernels P(2)(2it - K ,  K,E,Z) and P ( 2 ) ( 2 ~  - %,it, K ,  K )  plain zeros. In our 
problem we can choose 

(2.11) 

* (2)Kras 
where Vo,l,2,3 is a particular expression for the kernel which is given by Krasitskii 
(1990, 1994). The expression (2.11) is not singular and obeys the same ‘natural 
symmetry’ conditions (2.5). We recall that in accordance with formula (A5) bi 
contains terms of orders E, E~ and E ~ .  Thus, our exact solution of the reduced equation 
(2.4b) has an accuracy O(c3), i.e. its error is 0(c3). A similar trick of correction 
of kernels can be successfully used for different problems (say, for non-symmetric 
short-crested waves) in order to obtain exact solutions of the reduced equation of the 
type (2.9) (see BS95 for more details). 

The solution (2.10) gives us the simplest but not trivial three-dimensional solutions 
for the waves of permanent form - the so-called short-crested waves. It is easy to 
present solution (2.10) in terms of original physical variables. The formulae for the 
vertical displacement of the surface are given in the Appendix B. The linear term in 
(B 1) gives the simple superposition of two plane oblique waves. Higher-order terms 
are forced harmonics. It is important that in our case none of the coefficients in 
these terms are singular. Thus in this order of approximation we have a very simple 
solution easy to operate with. The singularities and nonuniqueness of the solution 
are unavoidable if one attempts to get higher accuracy; however the principal point 
is that, as we shall see below, this solution is sufficient to study the dominating 
instabilities in the small- and moderate-amplitude range. 
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2.3. A comparison between weakly nonlinear and 'exact' numerical solutions 
There is a question of true importance in itself and for our further analysis: 

How good are the approximate formulae (B 1) for describing the basic states 
beyond the range of their asymptotic validity; what characteristics of the wave can 
be modelled that way? 

First we again draw attention to the remarkable fact that the two-&functions 
ansatz of (2.10) or the formulae (B 1) provide an error 0(c3), but not o(E*) as it 
may be expected. The two-term ansatz gives the same accuracy as seven terms of 
Chappelear's (1961) solution or the series (2.8) truncated at the c3 order. 

Some conclusions can be deduced from figure l(a,b) which shows results of our 
approximate (weakly nonlinear) and 'exact' (numerical) calculations for wave energy 
and wave frequency no. Weakly nonlinear theory gives an accuracy better than 1% 
up to wave steepness 0.25 for all angles less than approximately 60". For these angles 
the good agreement is retained for larger steepness as well: even at steepness 0.4 
the discrepancies in energy and frequency do not exceed 5% and 0.2% (8% for 
the difference of the frequencies of linear and nonlinear waves), respectively. For 
angles exceeding 75" (like for all angles close to 90"- a plane wave) higher harmonics, 
which are responsible for higher-order corrections in Stokes-like series (2.7), play 
more important role. This leads to the growth of deviation in energy and frequency 
between the numerical and analytical results (see also Roberts & Schwartz 1983, 
figure 2.3)t. 

Our comparison shows that our approximate solutions model fairly well the integral 
characteristics of the wave (energy, frequency) in a wide range of wave steepness. 
All the discrepancies between analytical and numerical approaches are due to higher 
harmonics and can affect significantly small-scale details of the wave profiles, but not 
the integral characteristics. It gives us hope that the wave instabilities could be also 
described fairly well within the weakly nonlinear approach. Although a priori there 
is no guarantee that the small discrepancies in the description of the basic states do 
not result in a qualitatively different outcome, in the next section we shall show that 
this is not the case using the simplest two-&function ansatz for the basic state in the 
analytical study and the maximal possible accuracy for the numerical computations. 

3. The linearized stability problem 
3.1. Instability of essentially nonlinear solutions 

On linearizing the primitive equations (2.1) around the basic state discussed in $2 
we obtain the infinite set of first-order perturbation equations, which we reduce via 
a normal modes decomposition to an eigenvalue problem for the frequency of a 
perturbation mode, 1 (for more detail see IK94): 

AU - ABu = 0. 

The complex matrices A and B depend on the basic solution and the real longitudinal 
and transversal wavenumbers of the perturbation. An eigenvector u is a vector of 

7 It is important to note that both approaches (the analytical one and numerical schemes by 
Roberts 1983 and IK93) fail for nearly plane configurations. There are no continuous limits when 
three-dimensional patterns tend to become plane. This problem is far from being trivial but lies 
beyond the scope of the present consideration. The only attempt to address this problem has been 
done by Roberts & Peregrine (1983), where a particular continuous solution was derived. It should 
be noted however that the asymmetric patterns of the type studied by e.g. Bryant (1985) do have a 
continuous transition to plane waves. 

(3.1) 
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FIGURE 1. For caption see facing page. 
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Fourier amplitudes (both of surface elevation and velocity potential) of the wave of 
perturbation (see IK93). Instability occurs for Im(1) # 0. 

Numerical methods are commonly used to reduce the perturbation equations to the 
eigenvalue problem (3.1). We use Galerkin’s method, which is as a rule rather efficient 
for these kinds of problems (e.g. Fletcher 1984). Generally, the method presupposes, 
first, a choice of a certain set of orthogonal basic functions, and second, casting of the 
primitive equations into a set of equations for the amplitudes of these modes. Accu- 
racy of the method does not depend directly on the number of modes, but is sensitive 
to the proper choice of the basic functions, to their proximity to a certain set of 
‘natural’ eigenfunctions. For our problem of short-crested waves in terms of primitive 
physical variables the most straightforward choice of the set of basic functions is a 
truncated series of Fourier harmonics, similar to that of a Stokes-like expansion. The 
effectiveness of this approach was demonstrated in IK93, IK94. All the numerical cal- 
culations throughout the paper were done using this version of the Galerkin method. 
However the problem of optimization of the basic set of functions has not been 
considered yet. It will be demonstrated below that the choice of the basic set could 
be optimized as well through casting the system in terms of the canonical variables. 

3.2. General properties of the eigenvalue problem within the framework of the 

In terms of Hamiltonian variables b(k )  the stability problem is formulated quite 
similarly to the Galerkin approach, as a set of equations for the amplitudes of the 
basic modes. These modes are related in a nontrivial way to the primitive physical 
variables (see Appendix A, (A 1) - (A 5) ) .  The fact that the basic states (2.4b) take in 
terms of our canonical variables the exceptionally simple form of just two &pulses 
allows us to expect that the stability problem will be optimized as well. 

four-wave Zakharov equation 

Consider a perturbed solution (2.10) in the form 

&k) = b(k) + a(k) 

where a(k) (I a(k) I<<) b(k )J )  is a small continuous perturbation in k-space. The 
linearization of the Zakharov equation picks out pairs of equations for perturbations 
with wavevectors (h + n(K - K)) and (K + iz - /i - n(iz - K)) where h is an arbitrary 
‘probing’ wavevector, while n is an arbitrary integer number and (iz 2 K) are the 
wavevectors of the propagating component (+) and of the standing component (-) 
of the basic three-dimensional-pattern (their moduli give the inverse spatial scales of 
the basic pattern, longitudinal and transversal, respectively) : 

. aa(h + n(iz - K)) 
at 

1 

= D:a(h + n(K - K)) + E(t)C,a*(P + K - h - n(iz - K)) 

+Tn+la(h + ( n  + l)(Z - K)) + E(t)Q,+la*(iz + K - h - ( n  + l)(E - K)) 

+Tna(h + ( n  - 1)(% - K)) + E(t)S,p*(K + K - h - ( n  - l)(iz - K)), ( 3 . 2 ~ )  

FIGURE 1. Frequency 0 (a) and potential energy (b)  of short-crested waves us. square of wave 
steepness, E, for different angles 0. Solid lines: ‘exact’ numerical calculations based on the algorithm 
by IK93; dashed lines: asymptotic weakly nonlinear theory. The plots demonstrate surprisingly 
good agreement between the leading-order terms of the asymptotic theory based on the Zakharov 
equation and ‘exact’ solutions for a wide range of angles 0. The weakly nonlinear description 
becomes less effective as 0 tends to n/2, i.e. to the nearly plane wave. In particular, an essential 
qualitative feature is lost, namely the pronounced maximum of 8. 
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Tn- 1 sn-1 D:-l Cn- 1 Tn Qtl 0 0 
-Qtl-~ -Nn-1 -Ctl-l 0 i - I  -S, -Ntl 0 0 

0 0 Tn S n  0,' Cn Tn+1 Qn+l 

0 0 -Qn -Nn -Cn 0, -Sfl+1 -Ntl+1 

0 0 0 0 Tn+1 Dn++l Ctl+l 
0 0 0 0 -Qn+l -Nn+1 -Cn+l Di+l 

The expressions for the elements of matrix A in terms of the interaction coefficients 
are given in Appendix C. Thus we have an eigenvalue problem looking similar to 
(3.1) but 

B is the unit matrix now; 
matrix A belongs to the class of so-called Jacobian matrices, i.e. the elements 

sharply decrease with the distance from the main diagonal (in the general case as 
.dn/2] (BS95), where n is the number of a diagonal, Ln/2J is the integer part of ( n / 2 ) ) .  
In our particular case we have plane zeros for nondiagonal terms Ak+p,p = Ap,p+k = 0 
(k  > 4) and A has the following essential properties: 

(a) diagonal terms in A are differences of the frequencies of harmonics of pertur- 
bations and the basic frequency &; 
(b) nondiagonal terms, responsible for the interaction of these harmonics, have a 
order of amplitude squared ( E * ) ;  

( c )  nondiagonal terms A,  owing to symmetries (2.5) obey the equality 

( d )  matrix A is invariant relative to the renumbering of its terms, i.e. for the 
wavevectors of disturbances k and (h+n(K--rc)) we have the same set of eigenvalues. 

The latter is a general property of the periodic solutions (e.g. McLean et al. 1981). 
We draw attention to the fact that within the framework of exact equations (IK94) 
the eigenvalue problem possesses a double periodicity, both in along- and cross- 
directions. In the approximation we consider here there is a transversal periodicity 
in k-space only. It can be shown that the longitudinal periodicity also appears when 

gives us an infinite countable set of coupled linear equations with real constant 
coefficients. We can cast equations (3.2) in matrix form to obtain an eigenvalue 
problem for the partial frequencies by setting 
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the fifth-order terms in the Hamiltonian 2 are taken into account (BS95). This 
translation invariance in the k-space was ignored in the analytical approaches by 
Stiassnie & Shemer (1984), Okamura (1984). These authors assumed higher harmon- 
ics of perturbation to be unimportant. Within our approach we can easily avoid 
this assumption, which in particular will allow us to describe some new details of 
higher-order instabilities (see $ 3 . 5 ) .  

The smallness of nondiagonal terms of the matrix A makes it natural to look for 
the solutions as an expansion in powers of the these terms, i.e. in powers of E ~ .  In 
the zeroth-order approximation E + 0 we have an eigenvalue for an infinite diagonal 
matrix. The eigenvalues of this matrix can be easily found as a set of its diagonal 
terms Dz, 0;. Thus we have a set of frequencies of free surface waves relative to 
the frequency of the basic wave pattern. All these frequencies are real (no instability 
of perturbations) and, in general, as can easily be seen, are different. Such a method 
of analysis breaks down when two or more of these frequencies are close to each 
other. In this case small nondiagonal terms appear to be important and we can 
expect the emergence of instabilities; moreover just a few nondiagonal terms proved 
to be important (Krein 1950; MacKay & Saffman; Yakubovich & Starzhinskii 1975). 
This understanding allows us to reduce sharply the number of modes of perturbation 
which should be taken into account for an instability analysis and thus the dimension 
of the corresponding matrix as well. 

This qualitative picture indicates us how to proceed with the further analysis. 

3.3. Four-wave (class I) instabilities: classijkation of instabilities 

As the first step of our analysis we consider the simplest case of the emergence of 
instability when only two eigenvalues (or just two diagonal terms in the Hamiltonian 
formulation) of the matrix A are close to each other. Let us fix these diagonal terms 
and denote them, say, do and dk. We can present the eigenvalue problem (3.4) in 
terms of power series in E ~ .  Assume Ao& # 0, which means that do and dk are in the 
same block 4 x 4 of matrix A. In this case we have the following expansion for the 
determinant in (3.4): 

+oo 

[(do - A)(dk - 1,) - AOkAkOl (dp - 1) + o(l & 1 6 )  = 0 (3.6) 
--oo(P#k,O) 

and hence the leading-order approximation for the eigenvalues is 

21,2 = ;{(do -t dk) f [(do - dk)2+4AokAko]1’2}. (3.7) 

In our formulation the matrix A possesses, as already mentioned, the important 
specific property I A ,  /=I  Aji I due to the Hamiltonian symmetries (2.5). 

Thus we have got the necessary and sufficient a priori criterion of instability: 
instabilities in order c2 (complex 1, in (3.7)) occur when: 

(a) any two of diagonal elements, designated, say do and dk, are close to each 
other, that is I do - dk I is of order of E~ or smaller. This criterion corresponds to the 
well-known necessary criterion of instability (see Krein 1950; MacKay & Saffman 
1986; Yakubovich & Starzhinskii 1975); 

(b )  the corresponding nondiagonal elements, AOk and AkO, have opposite signs. This 
is the sufficient criterion of crossing of colliding eigenvalues (Krein 1950; MacKay & 
Saffman; Yakubovich & Starzhinskii 1975). 

There are four cases of possible instabilities of this type for the ‘basic’ block (4  x 4 )  
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of the matrix A that satisfy both to the necessary (a) and sufficient (b)  criteria: 

0,’ m D; or D,’+l = D;+l, (3.8~) 

0,’ = D;+l or Di+l = 0;. (3.8b) 
The upper indices of D; in our notation correspond to the signatures of the colliding 
eigenvalues. Thus the qualitative result by MacKay & Saffman (1986, see pp. 119- 
120) is expressed in the following explicit form (see formulae for D’ in Appendix 
C): two eigenvalues have opposite signatures if one of them corresponds to a wave 
of perturbation propagating faster and the other to a wave propagating slower than 
the basic wave. In this case the crossing of eigenvalues and, hence, instability occurs. 
In the opposite case of collision of two eigenvalues of the same signature ‘the cross 
avoiding’ of these eigenvalues occurs and there is no any instability. 

Our eigenvalue problem (3.4) is formulated for an arbitrary wavevector of per- 
turbation h. These cases of matching of the diagonal terms (3.8a,b) in the limit of 
small wave amplitude correspond to the following resonance conditions prescribing 
two-dimensional curves in wavevector space : 

(3.94 

(3.9b) 

The cases (3.9b) give us the well-known resonance conditions for the instability of 
plane waves with vectors 5 or K (Phillips 1960). The conditions (3.9~) give us another 
case of the resonance of two different basic waves is and K and two perturbation 
waves. All these instabilities are four-wave ones or the ‘class 1’ ones in the classification 
by McLean et al. (1981) and McLean (1982) and we can interpret (3.9b) as lb, and 
(3.9~)  as l a  subclasses of this type of instability. This classification of instabilities was 
proposed in IK94. 

The results of this section are based on the formal asymptotic expansion in E’ and 
the assumption that just two diagonal elements are nearly equal. Are these results 
sufficient to describe the instabilities of short-crested waves? Does the interaction of 
subclasses of instabilities (IK93, IK94) play any important role? As a first step we 
shall try to discuss this question by considering numerical (IK93, IK94) and analytical 
results of calculations of instability rates in accordance with the approximate formulae 

1 2520 = o ( h  + n(is - K ) )  + w(is + K - h - n(R - K ) ) ,  

2520 = o ( h  + ( n  + l)(Z - K ) )  + o ( R  + K - h - (n  + 1)(K - K)), 

1 2520 = o ( h  + n(E - K ) )  + 4 2 %  - h - n(R - K ) ) ,  

2520 = o ( h  + n(% - K)) + o ( 2 ~  - h - n(Z- K ) ) .  

(3.7). 

3.3.1. ‘First’ comparison of the analytical and numerical results 
Some results of the calculations based on the simplest formulae (3.7), i.e. calculated 

for the (2 x 2) matrix, are presented in the graphic form. The dependence of the 
maximal growth rate on the angle 0 is plotted in figure 2(a,b) for two subclasses of 
instability given by (3.8a,b). Analytical results given by formula (3.7) are compared 
with the numerical computations. The maximal growth rate is the most representative 
instability characteristic for a comparison, as our asymptotic formulae are expected 
to work best at the resonance curves, where exact matching of the diagonal terms 
occurs. The boundaries of the instability regions are described less accurately. 

The growth rates given by the weakly nonlinear formulae (3.7) for relatively small 
values of angles (up to 40”) are in excellent agreement with the numerical results. 
Discrepancies in analytical and numerical results are relatively larger for greater 
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FIGURE 2. Maximal instability rates of the 'la' (a) and the 'lb' (b)  instabilities us. 0 for different 
values of the wave steepness E. Solid lines: numerical calculations based on the algorithm by IK94; 
dashed lines : asymptotic weakly nonlinear theory (the leading-order approximation, formula (3.7)). 
The plot illustrates good agreement between the numerical and asymptotic results for almost the 
whole range of 0 except nearly plane wave patterns. It also indicates the very low sensitivity of the 
class 16 instability to the angle. Deviation of the asymptotic curve for large 0 can be attributed to 
higher-order nonlinearity. 

angles 0. There are two possible reasons for these discrepancies. The first one is 
the contribution of the higher-order harmonics to the basic solutions. We have seen 
from the earlier analysis in 5 2 that this contribution becomes more important for 
configurations close to the plane wave (see figure lab). 

The second reason for discrepancies is an interaction between two subclasses of 
instabilities which has not been taken into account by the simplest formula (3.7). It 
corresponds to the proximity of more than two diagonal terms of matrix A to each 
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other. The analysis of the eigenvalue problem for the matrix A block greater than 
(2 x 2) is needed in this case. This is the subject of the next subsection. 

3.4. Interaction between the subclasses 
3.4.1. Movements of the roots in the eigenvalue problem 

Matching of just two diagonal elements is the most common, we may say generic, 
situation and, as we have shown in the previous subsection, being described in 
the main order by a simplest formula (3.7), it still provides the good quantitative 
predictions of the instability rates for a large range of basic wave configurations 
and parameters. Nevertheless, matching of more than two diagonal terms in the 
matrix A inevitably occurs and as we show below its analysis is of importance for 
understanding of the physics of instabilities. 

Formally, the multiple coincidence of diagonal terms can be treated by means of 
an asymptotic procedure similar to that of the previous subsection. The eigenvalue 
problem of infinite dimension reduces in a similar way to that of dimension equal 
to the number of close diagonal elements. We note however that within the adopted 
approximation of the Zakharov equation this number is effectively limited by the 
maximal order of the block of the matrix A with all non-zero terms, that is by the 
order 4. Thus we consider a truncated matrix A of the order (4 x 4), which leads to 
a quartic equation for the eigenvalues: 

A4 + L3A3 + L2A2 + L1A+ Lo = 0. (3.10) 

The coefficients of (3.10) are real and can be easily expressed in terms of interaction 
coefficients and of the basic solution parameters (see Appendix C). This equation is 
solvable analytically using the well-known Descartes-Euler formulae (e.g. Abramovitz 
& Stegun 1964) and the problem of its analysis can be considered closed (despite rather 
cumbersome expressions for the roots). However, being interested in a qualitative 
understanding of what essentially new element brings an increase of the order of 
the eigenvalue problem, instead of the analysis of the cumbersome exact solutions of 
(3.10) we shall attempt to treat this problem as an interaction between the classes of 
instabilities we have already identified. In other words, knowing the asymptotics in 
parameter space where solutions are given by the simplest (2 x 2) equations, we try to 
figure out what happens to eigenvalues in the ‘interaction zone’, i.e. we are interested 
in the qualitative understanding of movement of the roots of (3.10) in parameter 
space. 

An asymptotic approach, based on the ‘pure’ instabilities of the previous subsection 
as a zero approximation, seems to be most illuminating. At least we can reveal the 
tendencies of transformation of these ‘pure’ instabilities. Obviously this procedure 
inevitably breaks down when the roots come too close or in other words interaction 
becomes too strong. However at the moment we are more interested in qualitative 
analysis and this asymptotic approach suits our purposes well. 

‘Weak’ interaction of the instabilities can be described by an eigenvalue equation 
of the form 

[A2 - (A1 + A2)A 4- A1A2] [A2 - (A, -t A4)A 4- A3&] = 9. (3.11) 
Here 9 is a formally small perturbation. In this form the problem can be easily 
analysed qualitatively as a movement of A relative to its unperturbed values Ai 
( i  = 1,2,3,4) (all the expressions in brackets in the left-hand side and 9 are real). 
Figure 3 illustrates this movement. 

Its intersection with The left-hand side of (3.11) is a fourth-order parabola. 
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I 

FIGURE 3. Interaction of ‘pure’ instabilities in terms of the simplest asymptotic approach. (a )  
Unperturbed eigenvalues. ( b )  Positive perturbation enlarges the range of frequencies or destabilizes 
stable states. This perturbation, can result in partial (b )  destabilization of stable (a) ‘pure’ instabilities. 
(c,d) Negative perturbation diminishes the range of real frequencies 2 and destabilizes partially (c) 
or fully ( d )  stable ‘pure’ states (a). 

the abscissa corresponds to real values of A, i.e. to stability (figure 3a). A small 
perturbation (the right-hand side of (3.11)) corresponds to a shift of the abscissa 
in the vertical direction. We emphasize that in our problem this perturbation may 
be both positive or negative. This means that there is a possibility of partial (9 is 
positive or negative - figure 3b,c) or full (when all four eigenvalues I are imaginary) 
destabilization (9 is negative - figure 3 4  of the original stable ‘pure’ states. Evidently, 
stabilization of the original unstable ‘pure’ states is possible as well. 
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Coming back to the general situation described by equation (3.10) we can conclude 
that interaction can either increase 'pure' instability or stabilize it. The point we 
would like to stress is that instabilities can both appear or disappear owing to this 
interaction. We note that the employed perturbation technique does not describe this 
phenomenon quantitatively in the general case, i.e. for 'strong' interaction, and to get 
quantitative results in the general case one should solve (3.10). 

3.4.2. When is this interaction of instabilities important ? 

Having got a qualitative understanding of the possible behaviour of the eigenvalues 
we can pose the question 'When is this interaction important?' or more precisely, 'Where 
in parameter space is it most essential?' as the eigenvalues li depend parametrically on 
the perturbation wavevector h and the parameters of the basic state. While resonant 
curves (3.9a,b) of the instability classes la ,  l b  correspond to matching of two diagonal 
terms of a block of the matrix A, the domains of their intersection or proximity in the 
h-plane are the zones of relatively strong interaction of the 'pure' instabilities. Thus 
the interaction between subclasses occurs in the narrow zones in k-space lying in the 
immediate vicinity of two resonance curves belonging to different subclasses. It is easy 
to see that these resonance zones are very narrow indeed, - O ( E ~ ) .  One may expect 
their influence on the global characteristics of instability in the generic situations 
is unlikely to be crucial. However situations where this influence is important are 
possible as well and merit special consideration. 

These specific situations occur when these zones contain the maxima of a sub- 
class instability, provided the maximum is well localized, and the overlapping zones 
themselves are relatively large. To distinguish these exceptional situations we need: 

simple analysis of the resonance curves (3.9a,b); 
a basic knowledge of the properties of the instabilities belonging to each of the 

interacting subclasses derived in 9 3.3.1. 
Consider the properties which are necessary in this context in more detail. We 

recall that there are two basic classes of instabilities. The instability of class l b  has 
maximal rates for small wavenumbers of perturbation, h,,, (see Benjamin & Feir 
1967; Zakharov 1966, 1968; Longuet-Higgins 1978) 

( 3 . 1 2 ~ )  
Im(L~,x) NN P"(K, K ,  K ,  K ) ~ C O \ ~  = q2/8 (3.12b) 

where q is nondimensional wave height. The instability of class l b  is the Benjamin- 
Feir instability, which means that the dispersive terms are balanced by the nonlinear 
frequency shift. The wavenumber of the most unstable perturbation is of the order 
of the wave steepness E (see (3 .12~)) .  

Formula (3.7) and numerical computations by IK93, IK94 show that long-wave 
instability dominates among the resonant interactions of class l a  as well. In the 
corresponding limit formula (3.7) yields 

I hiax I = q2/(4cos 01, 

I hLX I = r/47 

( 3 . 1 3 ~ )  
Im(A",,,) = ~ I ~ ( ~ ) ( R , K , R , K )  1 co l 2  . (3.13b) 

For the class l a  instability the amplitude dispersion term for the most unstable 
perturbation is of order of the convective term (the difference of group velocities 
of two perturbation waves). In accordance with formula ( 3 . 1 3 ~ )  the most unstable 
perturbations in this case are much longer than those for the classical Benjamin-Feir 
instability (I hiax 1-  E ~ ,  while I hLa, 1-  E ) .  
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FIGURE 4. Samples of resonant curves in the h(p,q)-plane for class la  ( dashed lines) and l b  ( 
solid lines) for different short-crested patterns. (a) At 0 = 30" a simple intersection of resonance 
curves for relatively long-wave perturbations occurs. Strong interaction is localized in this zone. (b)  
0 = 54". At the point h = 0 two resonant curves are tangential to each other and strong interaction 
takes place in relatively large parts of the resonance zones. ( c )  0 = 70". The strong interaction 
between subclasses is localized in the zone O(E).  

We see that instabilities of these two subclasses are caused by different physical 
mechanisms. We note that la instability dominates in a wide range of angles 0 
excluding cases when the interaction coefficient P(2)(iz, K ,  iz, K )  is anomalously small 
(near 0 k: 43.9"). In terms of figure 3 this means that in the vicinity of this angle the 
corresponding minimum of the curve (3.11) for a 'pure' instability' of class la is close 
to the abscissa. A small perturbation 9 can strongly affect this slightly unstable state. 
The effect manifests itself in global instability characteristics in a relatively narrow 
range of angles 45" < 0 < 60". In this case the instability of class l a  is weak and 
zones of class la and class l b  instabilities are overlapping or lie very close to each 
other. This purely geometric fact is illustrated by figure 4. 

When 0 differs essentially from 0' = ( 7 c / 2 - 0 K e l v i n ) ,  two resonance zones intersect 
each other (see figure 4a,c). When resonance curves become tangential to each other 
at 0 = 0' (figure 4b), relatively large parts of resonance zones can interact strongly, 
which results in a sharp reduction of the la instability rate near 0' (see figure 2). 

The speculations given above are supported by a quantitative illustration : figure 5 
demonstrates the effect of interaction between instabilities. The results of the direct 
numerical analysis (IK94) are compared with the solutions of the eigenvalue problem 
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Angle, 0 (deg.) 
FIGURE 5. Maximum rate of class l b  instability for the wave steepness 0.1 us. the angle 0 calculated 
by different methods. A, Numerical approach (see IK94). m, Analytical results: interaction 
of instabilities is neglected (approximate formula (3.7)). 0, Analytical approach: interaction of 
instabilities is taken into account (solution to the quartic equation (3.10)). 

for the block ( 4  x 4 )  (see (3.10)) which takes the interaction into account and the 
analytical results provided by the formula (3.7) where interaction was neglected. 
The comparison is carried out for the most interesting range of angles, where in 
accordance with the speculations above the interaction is essential. One can see that 
the interaction influence upon the global instability characteristics indeed becomes 
negligible outside this zone. 

We see that the Hamiltonian approach gives an impressive accuracy for the global 
characteristics of instabilities even in the lowest order of the matrix A truncation. We 
have got a confirmation of our qualitative conclusions about when the interaction 
between the instabilities is important and when it can be a priori neglected. 

3.5. A qualitative analysis of higher-order resonances within the four-wave equation 
Throughout the previous subsection we analysed cases when the matching of the 
diagonal terms occurs within the 'basic' block ( 4  x 4 )  of matrix A. The instability rate 
in this case has order E ~ .  However the matching of, say, two diagonal terms located in 
two different basic blocks is also possible. An approximate expansion like (3.6) cannot 
be applied in the latter case because A o ~  = 0 within the accepted accuracy of the 
Zakharov equation and higher-order terms should be taken into account to describe 
the instability. It can be shown that the Hamiltonian expansion being extended to 
higher orders in E gives A o ~  to be of order ~ ~ 1 ~ / ~ + ~ 1  (see BS94) (1x1 means integer 
fraction of x). 

An asymptotic procedure similar to (3.6) leads to similar resonant conditions 
( a )  for diagonal terms of the same 

D ; = D :  or ( D ; k : D ; )  ( 3 . 1 4 ~ )  

( b )  and opposite signatures 

D$ = D; or (D; w 0,'). (3.14b) 

Here n = l k / 2 ]  is the number of a ( 4  x 4 )  block. If k c 3 (n < 2 )  (3.14ab) give 
harmonic resonance conditions which have been analysed in the previous section . 
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In the small-amplitude limit the resonance curves for an arbitrary k can be easily 
obtained. The case (3.14a) gives us two straight lines which are parallel to the axis of 
symmetry of our short-crested pattern 

In1 > 1. (3.15) 

This case corresponds to the resonance of two probing waves with the same frequencies 
and Ln/2 + 1J pairs of basic harmonics K and K. Generally, this resonance does not 
lead to the instability, because of the same signature of colliding eigenvalues. In 
other words, corresponding nondiagonal terms AOk and A ~ o  have the same signs (see 
BS94) and the simplest asymptotic procedure of the type (3.6) gives real eigenvalues 
- avoiding crossing of the eigenvalues. This is true as long as A o ~  # 0 and our 
asymptotic procedure (3.6) is not degenerated. For discrete sets of resonant points 

( a )  h = n(K - K ) ,  

( b )  i i = E + ~ - - n ( i Z - ~ )  

1 Ih/ = / h  + n(iz - K ) / ,  

Ii? + K - hl = IR + K - h - n(iz - K ) ( .  

it follows from a general asymptotic procedure (see Zakharov 1966, 1968; Krasitskii 
1994) being extended to higher-order terms in wave amplitude, that corresponding 
nondiagonal A o ~  are plain zeros. Thus, the answer to the question on instability can 
be given in this degenerate case neither in terms of the asymptotic procedure (3.6) 
nor within the general consideration (see Krein 1950; Yakubovich & Starzhinskii 
1975; MacKay & Saffman 1986). The problem has to be studied by other methods, 
say numerically. Resonances of this kind - ‘bubbles’ of superharmonic instability for 
plane (Longuet-Higgins 1978) and short-crested gravity waves (IK94) - have been 
investigated by this method. It was found that these instabilities are strongly localized 
in the space of wave parameters as ‘bubbles’. The instability rates corresponding to 
these ‘bubbles’ are of order ~ ~ 1 ~ / ~ + ~ 1  and the widths of the zones of instability are of 
the same order in amplitude. Being weak and capriciously dispersed over parameter 
space they represent a quite difficult task for a numerical analysis. 

The case (3.14b) gives us the resonance curves 

200 = o ( h )  + co(K + K - h - n(n - K ) ) .  (3.16) 

Consider the family of instabilities specified in (3.16) in more detail. The resonances 
(3.16) are the fourth-order curves for gravity deep-water waves. These curves exist if 
the following condition is satisfied: 

3 
C O G  0 

n2 < ___ + 1. (3.17) 

Inequality (3.17) gives us the number of resonance curves of the type (3.16) for any 
given angle 0. From (3.16) and the condition (3.17) an important conclusion follows. 
There are higher-order instabilities of class I ,  specijic for three-dimensional waves. 
These instabilities do not disappear as the patterns tend to long-crested ones (0 + 900). 

Moreover, the number of possible resonances for the case (3.14b) tends to infinity 
as the wave pattern tends towards a two-dimensional one. The existence of these 
resonances was demonstrated in IK93 as well. 

Both resonance conditions (3.15) and (3.16) correspond, as can be easily seen, to 
the Phillips resonances of two perturbation waves and 2 Ln/2 + 1J basic harmonics. 
Within the adopted order of accuracy of the Zakharov equation we can predict 
the existence of these instabilities and their location in k-space, but cannot describe 
quantitatively their rates. To conclude whether the instability takes place we check 
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FIGURE 6. Maximal instability rates for short-crested waves of high steepness. Solid lines: numerical 
calculations based on the algorithm by IK94; dashed lines: the asymptotic weakly nonlinear 
approach for the block (4 * 4) of the matrix A. 

the signatures of diagonal terms or the signatures of the nondiagonal terms AOk and 
AkO for the case k > 3 ( n  > l), which are equivalent to the Krein signatures or energy 
signs of the corresponding perturbations. Thus we come to a criterion similar to that 
obtained by MacKay & Saffman (1986) (Theorem 1, p. 118, see also 33.3 ): 
instability occurs if corresponding diagonal terms have opposite signatures (3 .14b)  or 
nondiagonal terms AOk are equal to zero (3.14a). 

The results of this subsection confirm the completeness of the picture of these 
resonances constructed by numerical methods in IK93. They explain the underlying 
physics and allow one to pinpoint the locations of possible resonances in more 
complex situations. 

3.6. Waves of high steepness 
The analytical part of our analysis was based on the asymptotic expansion in wave 
steepness E ;  the leading-order terms were retained only. Strictly speaking, we could 
not claim their validity beyond the range of very small steepness. The only way to 
investigate the range of their true applicability is through comparison with numerical 
computations using the exact equations. The plots of growth rates of instabilities of 
different classes (see figure 2) demonstrates that the analytical approach works well at 
least up to moderate steepness E = 0.2. What happens at even higher steepness? Does 
the validity of our analytical results hold? Does it depend on the wave parameters 
(the angle O)? To answer these questions computations of the maximal growth rate 
(the most representative characteristic) were performed for short-crested waves of 
high steepness, namely for E = 0.3 and 0.4. The results of these computations are 
presented in figure 6. 

This figure illustrates very good agreement between the numerical and asymptotic 
results for the range lo" < 0 < 70". The largest discrepancies occur for nearly plane 
waves: O = 7o",80" at E = 0.3,0.4 , where the theory a priori was not supposed to 
work well. The smaller gap betwen the numerical and analytical growth rates for 
0 = 4o",5o" at E = 0.4 is certainly due to the interaction of instabilities. The good 
agreement for nearly standing waves is surprising. For the point O = 7o", E = 0.4 the 
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convergence of the numerical procedure was not good enough to ensure confidence 
in the result. Therefore the corresponding growth rate is not given here. The poor 
accuracy might be due to the occurrence of a strong singularity in the vicinity of this 
point. For this point we can say now only that the asymptotic values seems to be too 
high. 

We conclude that the Zakharov approach works very well for the range of angles 
0 = 10",60" up to E = 0.4, the error being less than 10%. Moreover if we exclude 
some particular configurations (say, 0 = 40" - 50" at E = 0.3,0.4) we gain almost an 
order in accuracy. 

Further analysis of very steep short-crested waves, especially those close to the 
highest ones, requires special consideration and will be reported elsewhere. 

3.7. Wave instabilities and mechanical analogies 
In the previous subsection we have accomplished our analysis of the linear instabil- 
ities of the short-crested waves by two complementary approaches, which was the 
immediate goal of the present work. However having in mind our more distant goal 
to investigate more complex wave patterns it is highly desirable to acquire from this 
simplest example as much insight as possible into the physics of wave instabilities. 
We note that a characteristic feature of the weakly nonlinear problems cast into 
normal variables is their universality, i.e. there is a very limited number of different 
Hamiltonians, as almost all the specifics of the particular system is hidden in the 
corresponding kernels. This prompts us to look for simpler or better studied physical 
models governed by the same set of equations as, say, three-wave interaction might 
be modelled by gyroscope dynamics (e.g. Rabinovich & Trubetskov 1989). 

3.7.1. Quantum oscillators 
The most straightforward analogy lies in the domain of quantum mechanics. It 

could be noted that our basic system of linear equations (3.2), which describes 
instabilities of symmetric short-crested waves, also describes the motion of an infinite 
chain of interacting quantum oscillators. Indeed, a single quantum oscillator is an 
object governed by a linear equation of the type (e.g. Feynman, Leighton & Sands 
1963) 

. da = 
dt 

a (3.18) 

where a is its complex amplitude and is called its partial frequency. If we 
take an infinite number of oscillators having different partial frequencies, put them 
in line and connect them through a set of linear 'springs' such that each oscillator 
interacts with the five nearest neighbours, we arrive at our basic system. The partial 
frequencies of the oscillators are equal to the diagonal elements 

O y n t  = D+ 

while the 'strength of the springs' providing the interaction should be taken equal to 
corresponding nondiagonal elements of the matrix A. In this model the signs of the 
diagonal elements or the signs of the partial frequencies correspond literally to the 
signs of the energies of the oscillators. An instability within this model is naturally 
interpreted as matching of partial frequencies of any two (in the simplest case) 
oscillators having direct bonds and characterized by different energy signs. Matching 
of the frequencies means resonant interaction between the two oscillators, while the 
requirement of opposite energy signs permits the energy of each oscillator to grow, 
preserving the total energy. Multiple matching corresponds to multiple resonances. 
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However an interpretation of multiple resonances is not straightforward within this 
model. 

Little help can be found in the literature, as the dynamics of our chain of interacting 
linear oscillators differs qualitatively from the typical models studied in condensed 
matter physics. The latter deals with ensembles of quantum oscillators where all 
or almost all oscillators are identical, or at least there are few sorts of identical 
oscillators. As a rule ‘far’ coupling is neglected as well, i.e. only the interaction with 
the two nearest neighbours is taken into account in these models. A particular feature 
of these systems is that the states of identical oscillators are infinitely degenerated. A 
weak coupling in this system produces specific modes of group motions in this chain 
- phonons. 

In the context under consideration we have a quite different problem. All oscillators 
are different and propagation of phonon-like disturbances as in crystals is prohibited. 
The only qualitative conclusion we can make on the multiple resonances, which are 
not collective motion yet but differ strongly from the two-oscillator resonance, is that 
an increase of the number of identical oscillators leads to suppressing of ‘individual’ 
properties of oscillators and, in particular, might result in suppressing of ‘intrinsic’ 
instabilities of the unstable resonant couples involved. 

3.7.2. A chain of classical oscillators 
For obvious reasons it seems preferable to have an interpretation of the physics 

of the wave instabilities in terms of a simple model from the domain of classical 
mechanics. To elaborate it let us make some additional transformation of variables 
a@). Consider a diagonal block (2 x 2) of the system of equations (3.2) 

A linear transformation of dependent variables 

w,+ = pa,+ + qct,, 
w- = qa+ - n pa,, 

where 

p = [DT/(D,’ - D,)] “ 2 ,  

results in the single second-order equation for, say, W+ 
4 = [-D,/(D: - D,)] 1’2 

a2 W,+ a w,+ 
a t 2  + i(D: + D;)- at - (DZD;  + 4c;)w,f = 0. 

(3.19) 

(3.20) 

Equation (3.20) is the well-known equation for the Foucault pendulum (see e.g. 
Arnol’d 1978, $27), which describes the oscillation of a pendulum in a rotating frame 
of reference. Physical coordinates x and y for this pendulum correspond to real and 
imaginary parts of the complex variable W:. The angular velocity of the reference 
system is 

and the frequency of the classical linear oscillator (the pendulum) in the nonrotating 
reference system is 

4assic - - [(D: - D;)2/4  - Ci] 1’2. (3.21) 

= (D: + D,)/2. 
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The latter value is responsible for the stability of the oscillator. The rotation splits two 
frequencies of the oscillator &x;’ass’c that are equal in modulae into two different ones, 
which are close to 0,’ and D; (if we let C: be small). It also changes whimsically 
coordinates but does not influence the condition of the oscillator stability. The 
oscillator is stable if at;lassic is real, which corresponds to the motion of the oscillator 
in a bowl or to oscillations of a pendulum. The instability occurs when the bowl 
transforms into a hill or the pendulum is reversed. This is a case when 0,’ and 0; 
- oscillator frequencies are close to each other. Thus, we can interpret the instability 
occurrence as ‘internal resonance’ of the classical oscillator or ‘degeneration’ of the 
oscillator, when its potential surface becomes nearly flat. Thus, for the case of the 
simplest resonance we have found a very simple model in classical mechanics, that of 
an oscillator in a rotating frame of reference. A similar model can be suggested where 
instead of rotation of the frame the magnetic field effect upon a charged oscillator is 
taken into account. 

The coordinate transformation can consequently be executed for all pairs of per- 
turbations a:, a; in (3.2) and thus our problem can be interpreted as an analysis of 
an infinite chain of interacting Foucault pendulae, where each oscillator interacts with 
the two nearest neighbours only. The interaction of two different oscillators might be 
essential when these oscillators are close to their intrinsic instabilities. As an example 
we can imagine two coupled oscillators in very shallow bowls or at very low hills: 
weak interaction could affect qualitatively their intrinsic dynamics. Bearing in mind 
that each of these oscillators has two different (split by rotation) frequencies and 
their bonds contain a ‘nonpotential component’ (see below), the possible outcome of 
this interaction is richer than in the simpler problem of two non-rotating oscillators 
coupled by potential bonds (e.g. Andronov, Witt & Khaikin 1966; Rabinovich & 
Trubetskov 1989). We have 

A feature which makes the interaction of our oscillators different from that of genuine 
pendulae is that symmetry restrictions for the coefficients in the right-hand side of 
(3.22) are much milder in our case. The only requirement is that the eigenvalue 
equation should have real coefficients. That results in richer dynamics of the system. 

4. Conclusions and discussion 
4.1. Conclusions 

The main goal of this work, to make a comparison of the two approaches to the 
wave stability problems for the simplest but still representative example of three- 
dimensional waves, has been achieved: 

the ability of the methods employed in IK93, IK94 to provide the full picture 
of instabilities, including the finest details of weak ‘bubble’ instabilities, has been 
confirmed by comparison with the asymptotic results in the small-amplitude limit; 

the hypothesis that the asymptotic results hold their validity for rather steep 
waves has been confirmed as well, for a wide range of wave patterns, although only 
the leading-order terms were used for the analysis. Some new physical mechanisms 
responsible for the occurrence of the wave instabilities have been identified. 
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4.2. Discussion 

In this paper we have considered a particular problem - that of the instability of 
short-crested surface gravity waves, which we believe to be the best, simple but 
still representative, example for understanding the general situation of water wave 
instabilities. Two complementary basic approaches IK93, IK94 and BS95 were used. 
The Hamiltonian approach by means of the development of an asymptotic procedure 
allowed us to get from an infinite system of equations for perturbations some very 
simple analytical expressions for the instability growth rates, avoiding a number of 
additional approximations that other authors were forced to accept. The results of 
the direct (numerical) analysis enabled us to claim surprisingly good validity of these 
simple formulae for waves of moderate and high steepness within a wide range of 
wave parameters as well. 

The detailed comparison of the results of the two approaches also allowed us 
to specify the contributions due to the particular classical Phillips instabilities. We 
generalized this concept by describing the interaction between the elementary classes. 
The remarkable fact we found is that most of the deviationsfrom the classical theory 
predictions can be quantitatively described with a good accuracy as a result of this 
interaction. The effect of strong interaction of subclasses is localized in a certain range 
of angles 0. That enables us to quantify the effects due to higher-order harmonics as 
well. 

Summarizing we would like to emphasize that the applicability of the concepts 
developed, which obviously is not confined to the particular problem of short- 
crested waves, is in effect much wider than the range of validity of weakly nonlinear 
theory. Indeed, some well-known effects typical of strongly nonlinear waves, such 
as, say, restabilization of a plane wave of large steepness with respect to four-wave 
instability (e.g. Lighthill 1965), or to be more precise and using McLean terminology, 
disappearance of class 1 (rn = 1) instability, are better interpreted in terms of the 
interaction of classes of instabilities, like the inhibition of the four-wave instability by 
the five-wave processes. 

The results of the work give a good overview of directions of further investigations 
in the field of wave stability problem. 

The analytical asymptotic approach presented here has two main directions of 
development. First, there are numerous opportunities to extend straightforwardly 
these results, as they are, to such problems as the stability of some more complex 
patterns consisting of more than two basic waves, and to take into account finite 
depth, capillarity (remaining in the range where triad interactions are prohibited)?. 
The corresponding expressions for the kernels in the Hamiltonian series have been 
already derived by Krasitskii (1990, 1994). Second, it seems realistic to improve the 
present analytical results given now by the leading-order terms in the asymptotic 
expansion by taking into account the higher-order corrections employing a symbolic 
manipulator technique. 

The numerical approach seems to have large reserves in efficiency. The problem 
being formulated in Hamiltonian variables (not confined to the leading order as in 
our present consideration) contains ordering in E and a rather ‘good’ structure of 
matrix A. This structure could be improved considerably through transformations 

t Some additional specific questions concerning higher-order resonances arise in this problem, 
which we believe in some cases could be avoided. In any case the problem of instability of 
gravity-capillary waves is the subject of further studies. 



322 S. I. Badulin, K I. Shrira, C. Kharifand M. Ioualalen 

leading to the 'normal' variables, which should give an enormous gain in efficiency of 
computations. 

It should be noted that our study has also outlined a range of wave patterns, 
namely nearly plane waves, where neither the developed asymptotic approach nor 
the numerical treatment work well. This specific and very important area requires a 
quite new approach, which is still to be invented. Here we confine ourselves to just 
drawing attention to this challenging problem. 
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Appendix A 

surface velocity potential and surface displacement 
Canonical variables a&), a*(-k) are expressed in terms of Fourier amplitudes of 

q(k) = M(k)[a(k)  + a*(-k)], y ( k )  = -iN(k)[a(k) - a'(-k)] (A 1) 

with 
1/2 1 I2  

M ( k ) =  ___ 

where o ( k )  is the dispersion relation of linear waves defined by 

and 

2n y(k)eik'"dk, y(k) = q*(-k),  (A 3) 

y(x) = 2.R y(k)e*'xdk, y(k) = y*(-k) .  (A 4) ' J  
Here k = (k, ,k,)  is the horizontal wavevector, integration with respect to k is 
extended over the entire k-plane, the asterisk denotes complex conjugate, and explicit 
dependence of y and 1~ on t is suppressed for simplicity of notation. 

A canonical transformation to the new canonical variables b(k), b*(k) is 
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The arguments k j  in a, o, U("), V(') and 6-functions are replaced by subscripts j ,  
with the subscript zero assigned to k .  Thus, for example, aj = a(kj , t ) ,  oj = o ( k j ) ,  
U t i , 2  = U(") (k ,k l , k2 ) ,  b0-~-2 = 6(k  - kl - k 2 )  etc. For differentials the notation 
dko = dk, dkOl2 = dkdkldk2 etc. is used, and the integral signs denote corresponding 
multiple integrals with limits from -a to +a. 

The kernels in (A5) are 

where 

q ; , 2  = -u-0,1,2 - u-0,2,1 + u1,2,-0, 

q , 2  = u0,1,2 + u0,2,1 + u1,2,0, 

(1) - 1. 
v0,1,2,3 - 3 (-v-0,1,2,3 - v-0,2,1,3 - v-0,3,1,2 + v1,2,-0,3 + v1,3,-0,2 + v2,3,-0,1), 

y (2 )  - I/ 
0,1,2,3 - ( -0,-1,2,3 + v2,3,-0,-1 - v-0,2,-1,3 - v-1,2,-0,3 - v-0,3,-1,2 - v-1,3,-0,2), 

(4) 
v0,1,2,3 = $ ( v0,1,2,3 + v0,2,1,3 + v0,3,1,2 + v1,2,0,3 + v1,3,0,2 + v2,3,0,1), 
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and the corresponding four-wave reduced equation reads 

The coefficients v(2) can be expressed in explicit form as 

and contain 'natural' symmetry conditions in the explicit form 

" ( 2 )  - - p(2) 
'0,1,2,3 = 1,0,2,3 - 0,1,3,2 - 2,3,0,1' 

The function Ao,l,Z,3 in (A8) is  an arbitrary one, satisfies the 'natural symmetry' 
conditions and is equal to zero at the resonant curve 

w O + W ~ - ~ 2 - w 3 = 0 .  

Appendix B 
The elevation of the free surface for the short-crested waves (2.10) is 

2 4  
2M(K)co cos(x)cos(Y) + -{M(is- K)A(2)(K -ii7iZ,K)COS(2Y) 

71 
r =  71 

2c3 
+ M ( ~ K ) [ A ( ' ) ( ~ K ,  K ,  IC) + A ( 3 ) ( - 2 ~ ,  K ,  K ) ]  cos(2X)cos(2Y)} 

+ ~ { M ( ~ K ) [ B ( ' ) ( ~ K , K , K , K )  + B ( 4 ) ( - 3 ~ , ~ , ~ , ~ ) ]  COS(~X)COS(~Y) 

+ M ( ~ K  -is)[B(2)(2ii- K ,K ,Z ,Z )  + B ( 3 ) ( ~ -  2%,X,iz,~)] COS(X)COS(~Y) 
+ M ( K ) [ B ( ~ ) ( K ,  K ,  K ,  K )  + 2B(2)(~,iS,  K , X )  + B ( 3 ) ( - ~ ,  K ,  K ,  K )  

71 
+ 3 M ( 2 ~  + X)[B(l)(27c + K, K ,  K ,  K) + I ? ( ~ ) ( - ~ K  - is, K ,  K ,  X ) ]  cos(3X) cos( Y )  

+ 2 ~ ( 3 ) ( - ~ ,  K, E, is)] cos(x) c o s ( ~  )> + 0 ( & 4 ) .  

(B 1 )  
Here X ,  Y are determined by (2.7) and expressions for functions Bc1)(k,k1,k2,k3), 
B"(k, k l ,  k2, k3), B(3)(k, kl ,  k2, k3), B(4)(k, k l ,  k2, k3) and M ( k )  are given in Appendix 
A (see also Krasitskii 1994 for finite-depth gravity-capillary waves). 
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Appendix C 
Nondiagonal terms in A are proportional to c2: 

Nn = 2V2)(iz + K - h - n(% - K ) ,  iz, K ,  is + K - h - ( n  - l ) (R - K ) )  1 co 1 2 ,  
Q,, = p(2)(% + K - h - n(R - K ) ,  h + (n  - l)(iz - K ) ,  K ,  K) I co 1 2 ,  
T,, = 2V(2j(h + n(% - K ) ,  K ,  K, h + ( n  - l)(Z - K ) )  1 co 1 2 ,  
S n  = P2)(iz + K - h - ( n  - ~)(iz - K ) ,  h + n(% - K) , z , z )  1 CO 1 2 ,  
C, = 2P2) (h  + n(iz - K ) , Z  + K - h - n ( ~  - K ) , z ,  K )  I co I 2  . 

Diagonal terms : 

0,’ = -520 + w(h + n(K - K ) )  

+2[P(2’(h + n ( K  - K ) ,  iz, h + n(iz - fc) ,  iz) 

+ V 2 ) ( h  + n(iz - K ) ,  K, h + n ( ~  - Ic), K ]  I co 12, 

0; = 520 - w(K+ K - h -  n(iz- K ) )  

- 2 [ ~ 7 ( ~ ) ( ~  + K - h - n(iz - K ) ,  K, K + K - h - n(is - K ) , z )  

+ ~ ( 2 ) ( i z + ~ - h - n ( ~ - ~ ) , ~ , ~ + ~ - ~ - n ( ~ - ~ ) , ~ ) ]  1 co l 2  
have the order of differences of the frequencies of the basic wave and perturbation 
waves. 
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